REVIEWS

EMBL—-CRG Systems Biology,

Centre for Genomic
Regulation (CRG) and UPF,
Carrer Dr. Aiguader 88,
08003 Barcelona, Spain;
and Institucio Catalana de
Recerca i Estudis Avancgats
(ICREA), Passeig Lluis
Companys 23, 08010
Barcelona, Spain.

e-mail: ben.lehner@crg.eu
doi:10.1038/nrg3404
Published online

29 January 2013
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Thousands of genetic variants have now been associ-
ated with common human diseases'* These associa-
tions between genetic variation and disease risk have the
potential to revolutionize our understanding of common
diseases because they identify pathways and processes
that are causally implicated in a disease, providing a first
step towards the development of targeted therapies and
prevention strategies.

However, will a particular individual, carrying a
defined set of genetic variants, actually develop one
or more of thousands of different diseases? Although
often presented as a cornerstone of ‘personalized and
predictive medicine, making accurate predictions for
most common diseases is still an ambitious challenge.
Crucially, these predictions must be made at the level of
individuals. A patient does not want to know the typi-
cal outcome of a mutation that they carry: they want to
know what will actually happen to them.

In most cases, our understanding of the genetics of
common human diseases is far from complete®. Moreover,
even with a complete understanding of the genetics of a
complex disease, we may never be able to make accurate
predictions about disease risk in individuals using genet-
ics alone, as is well demonstrated by the high levels of dis-
cordance for most common diseases in identical twins®~>.

How can we progress to a more complete under-
standing of the genetics of a disease? And why do even
genetically identical individuals often substantially differ
in phenotypic traits such as disease risk? The aim of this
Review is to highlight recent work in model organisms
that is relevant to both of these questions. The goal is not
to provide an exhaustive overview but rather to highlight
examples of studies that are enriching our understanding
of the interplay between genotype and phenotype and

Abstract | To what extent can variation in phenotypic traits such as disease risk be
accurately predicted in individuals? In this Review, | highlight recent studies in model
organisms that are relevant both to the challenge of accurately predicting phenotypic
variation from individual genome sequences (‘whole-genome reverse genetics’) and for
understanding why, in many cases, this may be impossible. These studies argue that only
by combining genetic knowledge with in vivo measurements of biological states will it be
possible to make accurate genetic predictions for individual humans.

so are providing a framework for the development of
personalized genetics in humans. I focus in particular
on non-vertebrate models, in which much larger-scale
systematic experiments have been possible.

I first consider the problem of associating genes
and genetic variation with particular phenotypes on a
genomic scale. I then proceed to the question of how
mutations in multiple genes combine to alter phenotypic
traits before introducing the idea of ‘whole-genome
reverse genetics’ to assess our ability to make accurate
phenotypic predictions. I then turn to the question of
why genome sequences are often insufficient to predict
trait variation in individuals. This requires consideration
of how the environment, stochastic processes, life history
and transgenerational influences interact to determine
phenotypic traits in individuals. All of these potentially
important influences on phenotypic variation are now
being studied at the molecular level in model organisms.

Globally linking genes to phenotypes

Despite the recent explosion of genome-wide associa-
tion studies (GWASs) in humans, we probably still do
not know most of the genetic variants that can influence
susceptibility to common diseases®. Given a subset of the
genes relevant for a trait, how can we predict the rest?
This is a question that has been quite extensively inves-
tigated in invertebrate models, where systematic for-
ward- and reverse-genetic screens have provided much
more complete maps of which genes, when mutated, can
influence which phenotypic traits.

Lessons from systematic genetics. In contrast to the situ-
ation in mammals, in invertebrate model organisms it is
relatively straightforward to carry out systematic genetic
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Figure 1| Phenologues: mapping phenotypes between organisms. Perturbation of
overlapping modules of orthologous genes may result in one set of phenotypes in
one organism but a different set of phenotypes in another organism. a | For example,
mutations in a module of DNA damage response genes cause breast cancer in
humans but a high incidence of males (Him) phenotype in Caenorhabditis elegans
(owing to chromosome non-dysjunction). Other genes linked to the Him phenotype
therefore make good candidate genes for novel breast cancer loci. b | The overlap in
the sets of genes linked to vascular growth in vertebrates and to cell-wall
maintenance in yeast allowed the prediction that the approved antifungal drug
thiabendazole would act as an angiogenesis inhibitor?.

Modules

Groups of genes or proteins in
a network that have strong
interactions among themselves
and that carry out particular
functions largely independently
of other genes or proteins.
Mutations in genes from a
module often have similar
phenotypic consequences.

Orthologous

A gene in one species is
orthologous to a gene in
another species if they are
derived from a common
ancestor.

screens. For example, in budding yeast®, fission yeast’
and Escherichia coli®, the construction of gene deletion
collections means that researchers can ‘walk through the
genome’ identifying all of the gene deletions that influ-
ence a phenotype of interest. Similarly, in worms® and
flies', genome-wide RNA interference (RNAi) screens
allow the comprehensive identification of genes that
influence any trait of interest. Moreover, cheap whole-
genome sequencing and genotyping are revolutionizing
the ease with which both random laboratory-induced
mutations'' and natural genetic variants'>'° can be
linked to trait variation.

The connections between genes and phenotypes are
therefore both more complete and more systematic in
model organisms than they are in humans. This provides
an unbiased assessment of the genetic complexity of
phenotypic traits, and indeed rather than a handful
of genes influencing a trait of interest, it is more com-
mon to identify hundreds or thousands of genes®'”*.
Moreover, genetic screens in model organisms have
highlighted that pleiotropy is extremely common: many
genes are linked to a wide diversity of traits®'”"". Of
course, natural genetic variation in genes may not nec-
essarily be so pleiotropic in consequence but, in general,
the pithy statement by Sewall Wright? in the 1930s that
“each character is affected by many genes and each gene
affects many characters” has largely been confirmed by
twenty-first century genetics. This seems to be the rule
rather than the exception.
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In addition to providing basic insights into genetic
architecture, these comprehensive model organism
genotype-phenotype maps can also have direct rel-
evance to human disease. This is because genes tend to
work in evolutionarily conserved pathways or modules,
and so genotype-phenotype maps can be directly trans-
ferred between species. For example, mutations in a
subset of genes that function in the response to DNA
damage tend to cause a high incidence of males (Him)
phenotype in Caenorhabditis elegans and breast cancer
in humans, meaning that new worm him genes make
good candidates for breast cancer genes?' (FIC. 1a). These
non-obvious relationships between phenotypes in
different organisms that are affected by mutations
in overlapping sets of orthologous genes are referred to
as ‘phenologues’ and can be systematically identified?'.
Mapping phenologues between species can also predict
new clinically relevant drugs. For example, on the basis
of the observation that a common set of genes influence
cell-wall maintenance in yeast and vascular growth in
vertebrates, an approved antifungal drug called thiaben-
dazole was predicted and validated as a novel inhibitor of
angiogenesis® (FIC. 1D).

Genome-scale networks that link genes to phenotypes.
The comprehensive genotype-phenotype data avail-
able for model organisms also provide a fantastic
resource for developing and evaluating computational
methods to predict the connections between genes and
phenotypes on a genomic scale.

A powerful strategy to achieve this is ‘guilt-by-
association’: if two genes function in the same pathway
or process, then mutations in these genes are likely to
have overlapping phenotypic consequences*?. Guilt-
by-association is a successful framework because many
different types of evidence can be used to identify func-
tionally associated genes (FIG. 2). For example, genes
encoding proteins that physically interact, that are
co-regulated or that are co-evolving are all more likely to
function in a common process. One approach for predict-
ing functionally coupled genes is therefore to integrate
evidence from diverse data sets to build large networks
of functional associations between genes* . Building
these networks requires the reliability of different data
sets to be evaluated and for interactions in the final
network to represent a weighted integration of interac-
tions that is inferred from different types of evidence®*.
Crucially, the systematic genetic data that are available
in model organisms then allow the systematic evalua-
tion of the utility of the networks in guilt-by-association
predictions for diverse traits*?*.

As an example, diverse data sets were used from
multiple organisms to construct a network consisting
of 102,803 linkages among 5,483 budding yeast pro-
teins (more than 90% of the proteome in this species)*.
This network was shown to have a broad utility for pre-
dicting new genes associated with diverse phenotypic
traits®**!. Indeed, networks for yeast?>?*%*?, worms*-*,
mice® and plants®***® have all been shown to associate
thousands of genes accurately to phenotypes. Moreover,
similar approaches in humans have shown potential for
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Figure 2 | Guilt-by-association: integrating data into genome-scale networks that
can be used to link genes to phenotypes. Many different experimental and
computational data sets can be used to predict whether two proteins (nodes in the
figure) physically or functionally interact (edges in the figure). Predicted functional
associations derived from different data sets, such as protein—protein interactions
(green lines), co-expression (red lines) and co-evolution (blue lines), can be integrated
by first benchmarking the interactions inferred from each data set against a set of
‘gold-standard’ interactions and then combining them in such a way that the
interactions are weighted according to their estimated reliability (weights here are
represented by the width of each line). In the final network, proteins are connected by
weighted interactions that may derive from one or multiple sources of evidence.
Mutations in proteins with high-confidence interactions with known disease genes
(red) are predicted candidate genes for the same disease (green).

Disordered regions

Regions of proteins that are
intrinsically unfolded; that is,
they are without a well-defined
tertiary structure under
physiological conditions.

Expression quantitative
trait loci

(eQTLs). Regions of the
genome containing genetic
polymorphisms that alter
how genes are regulated,
influencing how much RNA
or protein they produce.

identifying new genes for Mendelian®*” and complex*
diseases, although much more research is still needed in
the application of these ideas to human genetics, espe-
cially to GWAS data. Although the guilt-by-association
approach may have some bias towards identifying
pleiotropic genes*, extensive experimental validation
has demonstrated the practical utility of the approach.

Gain-of-function mutations. To date, large-scale
assessments of gene function have largely focused on
loss-of-function mutations. However, some systematic
data for gain-of-function genetic perturbations are avail-
able. For example, in budding yeast, ~15% of protein-
coding genes were found to affect growth severely when
strongly overexpressed*. The properties associated with
these ‘dosage-sensitive’ proteins include: a high con-
tent of disordered regions containing linear motifs that
are important for protein-protein interactions; a large

number of transient protein interactions; and enrich-
ment for protein domains that bind to linear motifs.
These features suggest the hypothesis that one of the
causes of dosage sensitivity is mass-action-driven pro-
miscuous molecular interactions*'. However, it is likely
that promiscuous (‘off-target’) molecular interactions
are only one cause of dosage sensitivity. Other causes,
such as increased or constitutive activation of ‘on-target’
pathways, protein aggregation, interference in the
assembly of protein complexes and disruption of
the ‘balance’ between pathways, have also been sug-
gested to be important***2. The development of tech-
niques that allow the gene copy number at which a gene
becomes detrimental to be determined*’ should allow
a finer investigation of dosage sensitivity, and in gen-
eral more screens are needed to link gain-of-function
mutations to particular phenotypic traits.

Non-coding variation. An important challenge that
also deserves more attention is to predict the effects of
mutations in non-protein-coding regions of the genome:
for example, when do mutations in regulatory regions
affect phenotypic variation? This is particularly impor-
tant, given the accumulating evidence that many causal
variants that influence human disease actually lie out-
side coding regions and alter gene expression. Systematic
maps of transcription factor binding sites, chromatin
modifications, chromatin accessibility and expression
quantitative trait loci (eQTLs) can be used to pinpoint
potentially important regulatory regions***, but this
does not directly address the question of whether vari-
ation in these regions has phenotypic consequences. To
date, evolutionary conservation has been used to identify
properties that predict when genetic variation in regula-
tory regions is most likely to be detrimental®, but as for
gain-of-function protein traits, systematic experimental
data on the phenotypic consequences of mutations in
regulatory regions is largely missing. The use of large
libraries of synthetic promoters** may provide one
starting point, but ultimately comprehensive data sets of
links between genetic variation and phenotypic variation
will be required to develop and to evaluate predictive
methods for regulatory regions.

Systematic analysis of epistasis

Mutations often have consequences that vary across
individuals, and one reason for this is epistasis or
genetic interactions, which are understood most
broadly as the dependence of mutation outcome on
genetic background***. There are numerous examples
of epistatic interactions in human disease, and indeed
epistatic interactions might, in part, have led to over-
estimations of the heritability (phenotypic variance
attributable to genetic variation) of human disease®'.
Model organisms have been used extensively both to
understand epistasis better and to learn how to predict
it2. Numerous types of epistasis can be envisaged®, but
two important outcomes are that the combined effect
of two mutations can be either stronger (negative or syn-
ergistic interaction) or weaker (positive or antagonistic
interaction) than expected*.
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Regions of the genome
containing genetic
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of variance in a particular
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Systematic mapping of genetic interaction networks.
Epistatic interactions between mutations have been
mapped on a massive scale in budding yeast™ and on
a smaller scale in fission yeast®”, C. elegans®** and in
Drosophila melanogaster cells®. In yeast, this has been
facilitated by the development of selection procedures
that allow arrays of mutant strains to be systematically
mated to construct double mutants®'. Genetic interac-
tions have also been studied between natural variants:
for example, between QTLs that influence mating
efficiency®®® and between QTLs that influence gene
expression traits (namely, eQTLs)%. Here I highlight
some important take-home messages from these genetic
interaction analyses in model organisms: epistatic inter-
actions are prevalent; genes differ widely in the number
of interactions in which they participate; interactions are
context-dependent; and interactions can be predicted.
These properties seem to be conserved between species,
and so they are also likely to apply to human genetic
disease.

Epistasis is prevalent. The first important conclusion
from these studies is that the potential for genetic inter-
actions is huge: in yeast, significant interactions were
detected between ~170,000 different pairs of genes from
more than 5million pairs tested®. Put simply, there are
many more ways to generate similar phenotypic effects
in yeast cells by combining two gene deletions than
there are by deleting a single gene. Consistent with
this, in an analysis of QTLs influencing gene expres-
sion, it was estimated that approximately two-thirds of

Genetic interaction network

Disease specifier

@
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Figure 3 | Systematic analysis of genetic interactions (epistasis): disease specifiers
and disease modifiers. Inyeast, worms and fly cells, the effects of inhibiting two
genes simultaneously have been systematically tested for many combinations of genes.
This allows large-scale networks to be constructed where each edge in the network
represents either a negative (enhanced phenotype) or positive (relieved phenotype)
epistatic interaction. Whereas some genes in genetic interaction networks have few
genetic interactions with genes of related functions, others interact promiscuously
with genes with diverse molecular functions. The first class of genes can be considered to
be ‘disease specifiers’ because their perturbation (alone and in combination) is only likely
to influence a limited number of phenotypic traits. By contrast, perturbation of genes
with functionally diverse interaction partners (here indicated by differently coloured
nodes) may enhance the consequences of mutations in many different processes,
depending on the other mutations carried in a genome. These genetic interaction hubs
have therefore been termed ‘disease modifiers’ to reflect this potential for promiscuity®®.
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225 gene expression traits influenced by two different
loci involved a significant interaction between the
two loci®®. Moreover, epistasis between both major- and
minor-effect loci was found to be important in deter-
mining sporulation efficiency in the progeny of a cross
between two budding yeast strains®>®, and higher-order
epistatic interactions involving multiple loci underlie
differences in the effects of gene deletions between two
laboratory strains of yeast®.

Disease specifiers and disease modifiers. A second
important conclusion from systematic studies of epista-
sis is that the number of potential genetic interaction
partners differs widely among genes: mutations in
some genes have many modifier loci but most have far
fewer®. Genes with many potential genetic interaction
partners (‘genetic hubs’) are functionally biased: for
example, they often encode components of chroma-
tin and transcription complexes®**. Genes with many
interactions in one species also tend to have many inter-
actions in other species. Moreover, the biased functional
properties of hub genes means that they can probably be
predicted to some extent even if no orthologous genes
exist in a model organism®. The same genes and pro-
cesses that have many genetic interactions in worms and
yeast are therefore likely to have many genetic interac-
tions in human disease. One way to consider genetic
hubs is as ‘disease modifiers; a mutation in a hub gene
has the potential to enhance the effects of mutations
in many other loci that alter very different phenotypic
traits (FIC. 3).

Predicting genetic interactions. The third conclusion
from the systematic analysis of genetic interactions is
that genes with closely related functions tend to have
similar profiles of genetic interactions. This means that
genetic interaction profiles can successfully predict gene
function®, but also conversely that gene functions (and
interactions that link functionally related genes) can suc-
cessfully predict genetic interactions®®. In particular,
if two genes from two different processes have a nega-
tive genetic interaction, this predicts that other genes
in the two pathways will also negatively interact®"2
Thus, the genetic interaction network is highly modular,
and modules of genes share similar profiles of genetic
interactions’ This allows genetic interactions to be pre-
dicted on a genomic scale using guilt-by-association®”*.
This is important because in higher organisms the sys-
tematic experimental mapping of genetic interactions
may never be realistic, and the number of possible
combinations to test statistically in association studies
is immense. Moreover, even in yeast, interactions have
primarily been mapped only for a single trait: growth.
Thus, extensive efforts are required to learn how best
computationally to predict likely interactions that can
then be statistically evaluated in human populations.

Genome-environment interactions

In addition to the effects of genetic background, another
widely appreciated influence on the outcome of muta-
tions is the environment: mutations may predispose
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to a particular disease but only if individuals are also
exposed to a particular biotic or abiotic environmental
condition or a trigger such as diet, temperature, parental
nurturing, variation in the microbiota or exposure to a
pathogen.

How mutations interact is also context-dependent.
Gene-environment interactions have been studied
both systematically and at base-pair resolution in model
organisms and have been found to be widespread'”'*7.
Moreover, epistatic interactions between genes have also
been found to be context-dependent. Thus, an interac-
tion detected in one particular condition’*”” or spe-
cies”* is often not detected in a second condition or
species. This plasticity of genetic interactions predicts
that even if a gene is implicated in two particular dis-
eases, it may have different interactions (or modifier
loci) in the two pathologies. As such, although the same
functional module may be implicated in two diseases,
the interactions of this module may differ between one
tissue and another.

Promiscuous influences of the environment. In addi-
tion to specific interactions with particular mutations,
it is important to note that the environment can also
influence the outcome of mutations in more general,
or promiscuous, ways. For example, the environment
can influence the effects of mutations by altering the
availability or activity of molecular chaperones, which
are proteins that influence the folding or activity of other
proteins in the cell®’. This is because the effects of many
mutations are modified by molecular chaperone activ-
ity, either because chaperones directly stabilize mutated
proteins or because the outcome of a mutation is influ-
enced by the activity of a second, chaperone-dependent
pathway or process®.

The chaperone activity — and therefore the mutation-
buffering capacity — of a cell or organism can increase or
decrease in response to environmental stimuli. For exam-
ple, severe environmental stress can titrate away molec-
ular chaperones and can therefore ‘unbuffer’ (that is,
enhance) the effects of otherwise phenotypically incon-
sequential mutations®*®. Conversely, a mild heat shock
that induces a protective stress response that includes
the induction of chaperones can increase the capacity
of an organism to buffer the effects of inherited detri-
mental mutations®. This shows how both current and
prior environmental conditions can have promiscuous
influences on the outcome of mutations.

Although promiscuous influences of the environ-
ment on mutation outcome have largely been con-
sidered from the perspective of protein folding, other
potential mechanisms may exist by, for example, promis-
cuous effects on gene expression. These warrant future
investigation.

Whole-genome reverse genetics

Ultimately, the best test of our understanding of genetics
is whether we can predict phenotypic variation from
sequence. In a given environment and for a given phe-
notype, which individuals will differ and how? This

challenge of predicting phenotypic variation from the
complete genome sequences of individuals can be termed
‘whole-genome reverse genetics'®. The goal is to make
accurate predictions, preferably for many different phe-
notypes or conditions simultaneously. This can seem like
a daunting task because of the sheer number of genetic
variants in each individual. For example, budding yeast
strains isolated in different environments or from dif-
ferent regions typically have protein-coding variation in
thousands of their 6,000 genes®. Simultaneously chang-
ing thousands of parameters is might be considered
one of the ‘worst possible experiments’ for a biologist.
However, it is a challenge that must be tackled.

Model organisms represent an ideal opportunity
for testing our ability to make whole-genome reverse-
genetic predictions. In several model organisms, we
have fairly comprehensive information from forward-
and reverse-genetic screens on the genes that can influ-
ence many different phenotypic traits (see above).
Moreover, cheap and quantitative experiments can be
carried out in model organisms to evaluate prediction
performance.

The challenge of making whole-genome reverse-
genetic predictions has been attempted and experi-
mentally evaluated in budding yeast®, but it could
also be applied to other model species. In the budding
yeast study, only protein-coding variation was consid-
ered, and all predictions were made relative to a ref-
erence laboratory strain. The approach consisted of
three main steps (FIG. 4). First, the variants affecting the
amino acid sequence of each protein in each individual
were evaluated to determine whether they were likely
to alter the function of that protein. There are many
different ways to estimate whether particular mutations
alter protein function®, and in this study a fairly simple
approach of considering the evolutionary conservation
of each amino acid across different yeast species was
used. Indeed, on the basis of an evaluation of budding
yeast mutations that are known to alter protein function
isolated in forward-genetic screens, this evolutionary
method seems to work well*. Second, for each different
environmental condition, the individual yeast strains
were ranked using the total function-altering mutation
load that they carry in sets of genes that were previously
reported to influence growth when deleted under the
same condition. These lists of genes were derived from
genome-wide screens using the deletion collection.
Thus variants in any of these genes were considered to
have a similar potential to influence the trait, and their
effects were assumed to combine additively. Third, the
actual phenotypic differences among individuals were
experimentally quantified (in this case, growth rate and
efficiency in different environments and resistance to
drugs), and these experimental data were used to evaluate
the performance of the predictions.

Surprisingly, this simple, protein-only, ‘black box’
and additive genetic model provided reasonable pre-
dictions of phenotypic variation across individuals®.
Moreover, when predictions failed, this could partially
be accounted for by the low reliability of the sets of
genes that were reported as influencing the trait, as
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Figure 4 | Whole-genome reverse genetics: making and evaluating phenotypic predictions from the genome
sequences of individuals. Model organisms can also be used to test methods for predicting phenotypic variation
from whole-genome sequences. For example, individual yeast strains from around the world could be subjected to
whole-genome sequencing and then diverse methods used to predict the genetic perturbations to different genes,
pathways and processes believed to contribute to different phenotypic traits. In the example, the effects of mutations
on individuals proteins in a set previously reported to influence a trait are estimated, and proteins predicted to have
altered functions are indicated in red. The total perturbation in the gene set is then used to predict whether each
individual will be affected for that trait (red) or not (blue) relative to a reference laboratory strain. These computational
predictions can then be compared to the actual phenotypic variation quantified in laboratory experiments. Future
studies could also assess the influence of non-protein-coding variation and changes in gene expression or copy
number and could consider more complex models, epistatic interactions and non-homozygous genomes.

evaluated by their lack of clustering in an integrated
network®. This study is, however, only a first step, and
the approach that it proposes could be more widely
used to evaluate alternative methods for predicting
phenotypic variation from whole-genome sequences.
For example, information on regulatory regions, gene
expression measurements and epistatic interactions

could all be incorporated into more sophisticated
models. Indeed, it could be envisaged that multiple
different groups could make phenotypic predictions
from a common set of individual genome sequences,
and the performance of these predictions could then
be determined by independent experimental evalua-
tion. Such cycles of prediction and independent evalu-
ation in model organisms might be one way to improve
methods for predicting phenotypic variation from

whole-genome sequences.

Additional influences on trait variation

As noted above, many disease-associated mutations
are incompletely penetrant (that is, not all individuals
carrying a mutation develop a disease) or have variable
expressivity (that is, individuals differ in the severity
of disease). These phenomena are often assumed to be

caused by either additive or epistatic interactions with
other genetic variants in a genome or by interactions
with environmental risk factors. However, incomplete
penetrance and variable expressivity are common even
in identical twins® and in inbred model organisms,
such as mice and C. elegans, that can be raised in highly
controlled environments®. For example, inbred rodent
strains still show substantial variation in body weight
even when the environment is tightly controlled®. What
are the causes of this variation in ‘genome outcome’, even
when the environment is controlled? The contributions
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Figure 5 | Epistasis with only a single mutation: inter-individual variation in the
expression of genetic interaction partners contributes to incomplete penetrance.
a | If the effects of a mutation in one gene (red) can be enhanced by mutations in three
other genes (blue, green and purple), then variation in the expression levels of these
three genes may also enhance this mutation. In the example, two of these genes
(blue and green) show substantial expression variation during early development, as
indicated by the box plots next to each gene. b | In one possible scenario, the effects
of the mutation in the red gene may be detrimental if the expression of either of the
genetic interaction partners (blue and green) is low during development. By contrast,
the mutation may have no effect when the expression of both of these genes is high.
Such ‘epigenetic’ inter-individual variation in the expression levels of genetic
interaction partners may be a common cause of incomplete penetrance and of the
variable expressivity of mutations. This variation in gene expression can be stochastic,
environmentally induced or perhaps subject to parental control.

Isogenic

Lacking genetic variation.
Some laboratory animals,

such as Caenorhabditis elegans
and mice, are inbred and so
siblings have identical genome
sequences except for de novo
mutations arising in each
generation.

to this are only just starting to be investigated and so are
introduced in the final section of this Review.

Epigenetic epistasis. Recent studies have provided
insights into this question, linking phenotypic variation
to inter-individual differences in gene expression’. For
example, in the bacterium Bacillus subtilis, variation in
the outcome of a mutation in a gene affecting sporulation
was partially accounted for by variation in the expression
level of that gene”. A second study in C. elegans exam-
ined how genes vary in expression downstream of an
incompletely penetrant mutation, showing that in the
presence of an upstream mutation several downstream
genes are not expressed, and levels of the remaining (but
highly variable) active downstream gene are sometimes
insufficient to activate the final gene in the regulatory
cascade’.

A third study proposed a more general model for
incomplete penetrance, suggesting that it is variation in
genetic interaction partners that underlies variation
in the outcome of a mutation®”. The logic of this model
is the following: if the effects of a mutation in a gene are
known to be influenced by mutations in a second gene,
then non-genetic variation in the activity of this second
gene might also influence the outcome of the mutation
(FIC. 5). Thus, knowing the genetic interaction partners
of a gene, it is possible to predict which genes, if they
have sufficient inter-individual expression variation,
might underlie incomplete penetrance or expressivity.
These interactions between mutations and expression
variants can be referred to as ‘epigenetic’ interactions or
epigenetic epistasis.

Epigenetic epistatic interactions can occur both
because of variation in the expression of specific genetic
interaction partners and because of variation in more
promiscuous genetic interaction hubs. For example,
during the early embryonic development of C. elegans,
substantial inter-individual variation in the expression of
the heat-shock protein 90 (HSP90) chaperone DAF-21 is
observed, and this variation partially predicted variation
in the outcome of a chaperone-dependent mutation®.
As noted above, systematic screens in model organ-
isms have shown that most genes have many potential
genetic interaction partners, meaning that variation
in the expression or activity of multiple genes could
have an impact on the outcome of a particular muta-
tion. By simultaneously quantifying the expression of
two genetic interaction partners — a partially redun-
dant paralogue of the mutated gene and the promis-
cuous genetic hub HSP90 — during early embryonic
development, it was possible to predict more accurately
the outcome of an inherited mutation in C. elegans®>.

Variation in how an organism responds to an envi-
ronmental challenge can also underlie variation in the
outcome of mutations. For example, following a mild
heat stress, not all C. elegans larvae respond similarly,
and longer signal duration in some individuals is linked
to stronger induction of target genes, such as chaper-
ones®™. The ability to buffer the effects of inherited muta-
tions was also stronger in individuals inducing a more
substantial stress response®. Thus, gene-environment
interactions can also vary among isogenic individuals,
and inter-individual differences in gene expression
lead to stronger or weaker genotype-environment
interactions.

To date, inter-individual variation in mutation out-
come has primarily been studied at the level of variation
in gene expression. However, it is likely that variation at
other scales could also have an impact on phenotypic
variation, such as variation in cell contacts or mechani-
cal stresses during development or variation in protein
aggregation later in life. If such variation is temporally
stable — for example, in the form of epigenetic inher-
itance through mitotic divisions that is transmitted by
changes in chromatin or gene circuits — then early
stochastic events may also influence how an organism
later responds to a perturbation such as infection or
diet. Thus, adult traits such as diabetes may also partially
trace back to embryonic events®*. Epigenetically stable
stochastic variation could also be important in the initia-
tion of tumour clones: inter-individual cellular variation
that provides a growth advantage will be selected and, if
it is semi-stably mitotically inherited, may lead to cancer.

Finally, although appreciated as an important influ-
ence in cancer, somatic mutations acquired during an
individual’s development may also contribute more
generally to trait variation.

Parental influences on phenotypic variation. Two addi-
tional influences on phenotypic variation that are often
overlooked and that are still quite poorly understood at
the molecular level are non-inherited genetic variation
(that is, the genotypes of parents) and transgenerational
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Haploinsufficiency

A gene is haploinsufficient if
removal of one of the two
copies in a diploid organism
has a detectable effect on
fitness or a phenotype.

Dominance

The extent to which one allele
of a gene exerts its effects
irrespective of a second allele
in diploid organisms. Complete
dominance implies that the
heterozgygote has a phenotype
that is indistinguishable

from that of the dominant
homozygote. Overdominance
implies that the phenotype

of the heterozygote lies outside
the range of both homozygote
parents.

influences of the environment (for example, alterations
in maternal provisioning of embryos).

Examples of non-inherited genetic variation that
influence phenotypic variation are quite common in
model organisms; examples include maternal-effect
mutations that affect Drosophila melanogaster develop-
ment and a natural polymorphism with a paternal effect
in C. elegans that causes lethality in particular zygotic
genotypes®™. Another example is the modification of
tumour growth in D. melanogaster: individual flies that
inherit a hyperactive JAK kinase develop tumours if
their parents carry mutations in several different regu-
lators®®, and the authors propose that the JAK kinase
antagonizes the erasure of parentally derived epigenetic
markings induced by these mutations. These examples
highlight the potential for the consequences of inherited
mutations to be influenced by genetic variation that was
present in parents but not inherited by their progeny.

In vertebrates and invertebrates, there are also diverse
examples of how changes in the parental environment
can influence phenotypic variation in the next genera-
tion®. In some cases, these changes are proximal: for
example, in C. elegans, osmotic stress triggers increased
deposition of glycerol into oocytes with the result that
these oocytes are better protected from osmotic stress
but are more susceptible to hypoxia®. In other cases,
the effects of parental environment are longer lasting:
for example, certain strains of male rat that are fed a
chronic high-fat diet are more likely to have female off-
spring with pancreatic B-cell dysfunction®, and male
mice that are fed a low-protein diet have offspring with
altered metabolic gene expression in their livers®”. Such
parental influences may, in some cases, also be trans-
mitted for multiple generations'®. Indeed, in humans
there is epidemiological evidence that the environment
experienced by one generation might influence the
phenotypes of subsequent generations'”'.

In most cases, how the maternal or paternal envi-
ronment influences phenotypic variation in offspring
is not understood at the molecular level, and dissect-
ing these molecular mechanisms is a key challenge for
the field. However, the phenomenon of imprinting in
mammals — whereby either the maternal or paternal
copy of a gene is silenced — clearly shows that there is
the potential for the propagation of specific epigenetic
information from the germ line to a zygote'®>. Moreover,
the establishment of transgenerationally inherited gene
silencing by small RNA pathways in C. elegans also high-
lights the potential for specific epigenetic information
to be transferred across generations'*'%, as does the
transgenerational propagation of the effects of genetic
perturbations that affect lifespan'®.

Future challenges
In this Review, I have highlighted some recent work in
model organisms that is relevant to the problem of
making accurate phenotypic predictions in individual
humans. Of course, there remain many important
challenges, and I discuss a few of these here.

First, with respect to the problem of linking genes
to traits, one major goal should be the creation of
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gene-phenotype maps for vertebrates similar to those
that have been produced for model organisms. These
model-organism maps — produced using both RNAi
and genetics and generated using both cells and whole
animals — would serve as a framework for human
genetic studies. One technical challenge is the ‘sign prob-
lem’ of positive and negative regulators: to make accu-
rate genetic predictions, all of the genes that influence a
human disease need to be distinguished, plus their direc-
tion of action and any interactions. Similarly, the ability
to distinguish loss-of-function from gain-of-function or
change-of-function mutations has received little atten-
tion but is important for making integrated predictions
across genomes. Haploinsufficiency'®” and dominance have
also received little attention in the context of genome-
scale predictions, and the mechanisms that cause small
increases in the dosage of some genes to have phenotypic
consequences are also not clear and warrant further inves-
tigation. In addition, predicting the effects of variants in
non-coding regions is still an open challenge, and although
improved genome annotation and cross-species analysis
should facilitate this, extensive sets of phenotypically
relevant mutations are also likely to be required.

Second, with respect to epistasis, a major challenge is
to understand the molecular mechanisms that underlie
most epistatic interactions™. Although epistatic interac-
tions often fall ‘between pathways’ (or between mod-
ules)”*72, it is not clear why different modules interact or
how these interactions can be predicted de novo. Other
issues that remain to be systematically investigated are
the importance of epistasis involving weak alleles, rather
than null alleles or those that strongly reduce function,
and the extent of epistasis between heterozygous muta-
tions. Moreover, epistasis screens with gain-of-function
mutations have been limited to a small number of over-
expression screens'®, and this is another area that deserves
more attention. However, the development of computa-
tional methods to predict epistatic interactions in human
disease genetics is perhaps the most pressing challenge.

Third, with respect to variation in non-protein-
coding regions of the genome, substantial efforts are
required to identify systematically the regulatory regions
of each gene and to build computational models of when
polymorphisms in these regions affect expression and
phenotypic traits.

Fourth, with respect to gene-environment interactions
and whole-genome reverse genetics, a key challenge will
be to make predictions in more complex scenarios, such
as from heterozygous genomes, for higher model organ-
isms and for traits for which there is less complete knowl-
edge about the relevant genes. An additional challenge
will be to incorporate other kinds of genetic variation,
such as copy number changes and variants in non-coding
regions, as well as gain-of-function mutations. Of course,
an important question is also whether considering epi-
static interactions between variants will be required to
make more accurate predictions and how best to predict
these. Moreover, will complex and dynamic models, such
as those involving metabolic networks or regulatory
interactions, or those focused on a particular pathway
or process be required for more accurate predictions?
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Fifth, with respect to variation in the outcome of
mutations among isogenic individuals, it will be neces-
sary to test whether the models developed in inverte-
brates also apply to vertebrate systems. Does variation
during embryonic development have an impact on the
developmental outcome of mutations and on adult
phenotypes in other species? In addition, the extent
to which environmentally triggered responses and
parental genetics can alter phenotypic variation in
subsequent generations warrants much more investi-
gation, and the molecular mechanisms that underlie
these transgenerational effects need to be elucidated.
Ultimately, it will be necessary to understand how all
of the various influences on phenotypic traits through-
out an individual’s life interact to determine their final
characteristics (FIC. 6).

Parental genetics Parental environment

N/

* Maternal products
e Paternal products

|c—>
|lc—>
Nc—
Ji\ fe—)

<X

Genome

‘Epigenetics’ * Environment (abiotic or biotic)

e Inter-individual variation

i ! Concluding remarks
e Somatic mutations

I have attempted to highlight here how model organisms
are being used to develop and to evaluate methods to link
genetic variation to phenotypic variation more compre-
hensively and also to understand why accurate pheno-
typic predictions may, for many traits and diseases, never
be possible from genome sequencing alone. Rather, the
work from model organisms reminds us that to make
accurate predictions at the level of individuals, it will be
necessary to combine genetic information with appro-
priate in vivo measurements of physiological states and
other ‘intermediate phenotypes, such as gene expression,
protein and metabolite levels or other functional assays
that capture additional influences on trait variation'®. As
highlighted above, there still remain many open ques-
tions, and model organisms will continue to provide an
intellectual framework, directly transferable biological
knowledge and practical computational methods that

Phenotype of adult individual

Figure 6 | Sources of phenotypic variance in individuals. A complete understanding of
phenotypic variation in individuals will require an understanding of the contributions
of multiple sources of variance and how they interact. For example, as illustrated here
for Caenorhabditis elegans, phenotypic traits may be influenced by variation in an
individual's genome, by maternal or paternal products contributed to the zygote

that may be influenced by parental genotype or parental environment, by somatic
mutations, by inter-individual stochastic variation and by both biotic (for example,
pathogens, commensal microbiota or parental behaviour) and abiotic (for

example, diet or temperature) environmental factors experienced at different life
stages. The extent to which early variation influences later phenotypic variation and

how early variation is propagated (‘epigenetics’) are also important open questions.
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1 Hindorff, L. A. et al. Potential etiologic and functional 9. Kamath, R. S. et al. Systematic functional analysis of 17. Dudley, A. M., Janse, D. M., Tanay, A., Shamir, R. &
implications of genome-wide association loci for the Caenorhabditis elegans genome using RNAI. Church, G. M. A global view of pleiotropy and
human diseases and traits. Proc. Nat/ Acad. Sci. USA Nature 421, 231-237 (2003). phenotypically derived gene function in yeast.

106, 9362-9367 (2009). This is the first genome-wide analysis of the effects Mol. Syst. Biol. 1, 2005.0001 (2005).

2. Manolio, T. A. et al. Finding the missing heritability of gene function inhibition in an animal. 18. Brown, J. A. et al. Global analysis of gene function in
of complex diseases. Nature 461, 747-753 10. Dietzl, G. et al. A genome-wide transgenic RNAi yeast by quantitative phenotypic profiling. Mol. Syst.
(2009). library for conditional gene inactivation in Drosophila. Biol. 2, 2006.0001 (2006).

3. Burga, A. & Lehner, B. Beyond genotype to Nature 448, 151-156 (2007). 19. Hillenmeyer, M. E. et al. The chemical genomic
phenotype: why the phenotype of an individual cannot 11. Hobert, O. The impact of whole genome sequencing portrait of yeast: uncovering a phenotype for all genes.
always be predicted from their genome sequence and on model system genetics: get ready for the ride. Science 320, 362-365 (2008).
the environment that they experience. FEBS J. 279, Genetics 184, 317-319 (2010). 20. Wright, S. Physiological and evolutionary theories of
3765-3775 (2012). 12. Ehrenreich, I. M. et al. Dissection of genetically dominance. Am. Nat. 68, 24—-53 (1934).

4. Clayton, D. G. Prediction and interaction in complex complex traits with extremely large pools of yeast 21. McGary, K. L. et al. Systematic discovery of
disease genetics: experience in type 1 diabetes. segregants. Nature 464, 1039-1042 (2010). nonobvious human disease models through
PLoS Genet. 5, e1000540 (2009). 13. Ehrenreich, I. M. et al. Genetic architecture of highly orthologous phenotypes. Proc. Natl Acad. Sci. USA

5. Roberts, N. J. et al. The predictive capacity of personal complex chemical resistance traits across four yeast 107, 6544-6549 (2010).
genome sequencing. Sci. Transl. Med. 4, 133ra58 strains. PLoS Genet. 8, 1002570 (2012). This paper describes the systematic identification
(2012). This paper describes the detection of more of ‘phenologues’, which are phenotypes in different
This study provides estimates of the maximum than 800 loci that influence resistance to 13 species that are linked because they are affected
ability of whole-genome sequencing to chemicals in all 6 pairwise crosses of four by overlapping sets of genes.
predict clinically useful risk information yeast strains, using extremely large pools of 22. Cha, H. J. et al. Evolutionarily repurposed networks
for 24 diseases on the basis of analyses of segregants. reveal the well-known antifungal drug thiabendazole to
monzygotic twin pairs. 14. Liti, G. & Louis, E. J. Advances in quantitative be a novel vascular disrupting agent. PLoS Biol. 10,

6.  Giaever, G. et al. Functional profiling of the trait analysis in yeast. PLoS Genet. 8, 1002912 e1001379 (2012).

Saccharomyces cerevisiae genome. Nature 418, (2012). 23. Fraser, A. G. & Marcotte, E. M. A probabilistic view of
387-391 (2002). 15. Parts, L. et al. Revealing the genetic structure of a trait gene function. Nature Genet. 36, 559-564 (2004).

7. Kim, D. U. et al. Analysis of a genome-wide set of gene by sequencing a population under selection. Genome 24. Lehner, B. & Lee, I. Network-guided genetic screening:
deletions in the fission yeast Schizosaccharomyces Res. 21, 11311138 (2011). building, testing and using gene networks to predict
pombe. Nature Biotech. 28, 617-623 (2010). 16. Swinnen, S. et al. Identification of novel causative gene function. Brief. Funct. Genom. Proteom. T,

8. Baba, T. et al. Construction of Escherichia coli genes determining the complex trait of high ethanol 217-227 (2008).

K-12 in-frame, single-gene knockout mutants: tolerance in yeast using pooled-segregant whole- 25. Lee, I., Date, S. V., Adai, A. T. & Marcotte, E. M.

the Keio collection. Mol. Syst. Biol. 2, 2006.0008
(2006).

genome sequence analysis. Genome Res. 22,
975-984 (2012).

A probabilistic functional network of yeast genes.
Science 306, 1555-1558 (2004).

176 [ MARCH 2013 | VOLUME 14

© 2013 Macmillan Publishers Limited. All rights reserved

www.nature.com/reviews/genetics



26.

27.

28.

29.

30.

32.

33.

34.

35.

36.

37.

38.

39.

40.

42.

43.

44,

45.

46.

47.

48.

Troyanskaya, O. G., Dolinski, K., Owen, A. B.,
Altman, R. B. & Botstein, D. A. Bayesian framework
for combining heterogeneous data sources for
gene function prediction (in Saccharomyces
cerevisiae). Proc. Natl Acad. Sci. USA 100,
8348-8353 (2003).

Rhodes, D. R. et al. Probabilistic model of the human
protein—protein interaction network. Nature Biotech.
23,951-959 (2005).

McGary, K. L., Lee, |. & Marcotte, E. M. Broad
network-based predictability of Saccharomyces
cerevisiae gene loss-of-function phenotypes. Genome
Biol. 8, R258 (2007).

Lee, |. et al. A single gene network accurately
predicts phenotypic effects of gene perturbation

in Caenorhabditis elegans. Nature Genet. 40,
181-188 (2008).

Lee, I, Li, Z. & Marcotte, E. M. An improved, bias-
reduced probabilistic functional gene network of
baker’s yeast, Saccharomyces cerevisiae. PLoS ONE
2,988 (2007).

Li, Z. et al. Rational extension of the ribosome
biogenesis pathway using network-guided genetics.
PLoS Biol. 7,e1000213 (2009).

Myers, C. L. et al. Discovery of biological networks
from diverse functional genomic data. Genome Biol. 6,
R114 (2005).

Chikina, M. D., Huttenhower, C., Murphy, C. T. &
Troyanskaya, O. G. Global prediction of tissue-specific
gene expression and context-dependent gene
networks in Caenorhabditis elegans. PLoS Comput.
Biol. 5,e1000417 (2009).

Pena-Castillo, L. et al. A critical assessment of Mus
musculus gene function prediction using integrated
genomic evidence. Genome Biol. 9 (Suppl. 1), S2
(2008).

Lee, I., Ambaru, B., Thakkar, P., Marcotte, E. M. &
Rhee, S. Y. Rational association of genes

with traits using a genome-scale gene network

for Arabidopsis thaliana. Nature Biotech. 28,
149-156 (2010).

Lee, I. et al. Genetic dissection of the biotic stress
response using a genome-scale gene network for rice.
Proc. Natl Acad. Sci. USA 108, 18548-18553
(2011).

Lage, K. et al. A human phenome—interactome
network of protein complexes implicated in
genetic disorders. Nature Biotech. 25, 309-316
(2007).

Lee, I., Blom, U. M., Wang, P. I., Shim, J. E. &
Marcotte, E. M. Prioritizing candidate disease
genes by network-based boosting of genome-wide
association data. Genome Res. 21, 1109-1121
(2011).

Gillis, J. & Pavlidis, P. The impact of multifunctional
genes on “guilt by association” analysis. PLoS ONE 6,
e17258 (2011).

Sopko, R. et al. Mapping pathways and phenotypes
by systematic gene overexpression. Mol. Cell 21,
319-330 (2006).

Vavouri, T., Semple, J. I., Garcia-Verdugo, R. &
Lehner, B. Intrinsic protein disorder and interaction
promiscuity are widely associated with dosage
sensitivity. Cell 138, 198-208 (2009).

Birchler, J. A. & Veitia, R. A. Gene balance hypothesis:
connecting issues of dosage sensitivity across
biological disciplines. Proc. Nat! Acad. Sci. USA 109,
14746-14753 (2012).

Moriya, H., Shimizu-Yoshida, Y. & Kitano, H. In vivo
robustness analysis of cell division cycle genes in
Saccharomyces cerevisiae. PLoS Genet. 2, e111
(2006).

Bernstein, B. E. et al. An integrated encyclopedia of
DNA elements in the human genome. Nature 489,
57-74(2012).

Cookson, W,, Liang, L., Abecasis, G., Moffatt, M. &
Lathrop, M. Mapping complex disease traits with
global gene expression. Nature Rev. Genet. 10,
184-194 (2009).

Francesconi, M., Jelier, R. & Lehner, B.

Integrated genome-scale prediction of detrimental
mutations in transcription networks. PLoS Genet. 7,
€1002077 (2011).

Gertz, J., Siggia, E. D. & Cohen, B. A.

Analysis of combinatorial cis-regulation in
synthetic and genomic promoters. Nature 457,
215-218 (2009).

Sharon, E. et al. Inferring gene regulatory logic from
high-throughput measurements of thousands of
systematically designed promoters. Nature Biotech.
30,521-530 (2012).

49. Phillips, P. C. Epistasis—the essential role of gene 73.

interactions in the structure and evolution of genetic
systems. Nature Rev. Genet. 9, 855-867 (2008).

50. Lehner, B. Molecular mechanisms of epistasis within T4.
and between genes. Trends Genet. 27, 323-331
(2011).

51. Zuk, O., Hechter, E., Sunyaey, S. R. & Lander, E. S. 75.

The mystery of missing heritability: genetic
interactions create phantom heritability. Proc. Nat/
Acad. Sci. USA 109, 1193-1198 (2012).

52. Lehner, B. Modelling genotype—phenotype 76.

relationships and human disease with genetic
interaction networks. J. Exp. Biol. 210, 1559-1566
(2007).

53. Drees, B. L. et al. Derivation of genetic interaction 7.

networks from quantitative phenotype data. Genome
Biol. 6, R38 (2005).
54. Phillips, P. C. The language of gene interaction.

Genetics 149, 1167-1171 (1998). 78.

55. Costanzo, M. et al. The genetic landscape of a cell.
Science 327, 425-431 (2010).
The most comprehensive analysis of epistatic

interactions in any organism; the effects on growth 79.

are quantified for more than 5 million pairs of
mutations in yeast.

56. Frost, A. et al. Functional repurposing revealed by 80.

comparing S. pombe and S. cerevisiae genetic
interactions. Cell 149, 1339—-1352 (2012).

57. Ryan, C. J. et al. Hierarchical modularity and the 81.

evolution of genetic interactomes across species.
Mol. Cell 46, 691-704 (2012).

58. Lehner, B., Crombie, C., Tischler, J., Fortunato, A. & 82.

Fraser, A. G. Systematic mapping of genetic
interactions in Caenorhabditis elegans identifies
common modifiers of diverse signaling pathways.

Nature Genet. 38, 896-903 (2006). 83.

59. Byrne, A. B. et al. A global analysis of genetic
interactions in Caenorhabditis elegans. J. Biol. 6, 8

(2007). 84.

60. Horn, T. et al. Mapping of signaling networks through
synthetic genetic interaction analysis by RNAi. Nature

Methods 8, 341-346 (2011). 85.

61. Tong, A. H. et al. Systematic genetic analysis with
ordered arrays of yeast deletion mutants. Science
294, 2364-2368 (2001).

62. Gerke, J., Lorenz, K. & Cohen, B. Genetic interactions 86.

between transcription factors cause natural variation
in yeast. Science 323, 498-501 (2009).

63. Lorenz, K. & Cohen, B. A. Small- and large-effect
quantitative trait locus interactions underlie variation
in yeast sporulation efficiency. Genetics 192,
1123-1132 (2012).

64. Brem, R. B. & Kruglyak, L. The landscape of genetic
complexity across 5,700 gene expression traits in
yeast. Proc. Natl Acad. Sci. USA 102, 1572-1577
(2005).

65. Brem, R. B., Storey, J. D., Whittle, J. & Kruglyak, L.
Genetic interactions between polymorphisms that

affect gene expression in yeast. Nature 436, 87.

701-703 (2005).

This paper highlights the importance of epistatic 88.

interactions between natural variants that influence

gene expression. 89.

66. Dowell, R. D. et al. Genotype to phenotype:
a complex problem. Science 328, 469 (2010).
By constructing a gene deletion collection for a
second laboratory strain of yeast, the authors

identify > 40 genes that are essential in this 90.

strain but not in a previously analysed strain. In
most cases, this ‘conditional’ essentiality in one

strain is due to variation in four or more different 91.

modifier loci.
67. Koch, E. N. et al. Conserved rules govern genetic
interaction degree across species. Genome Biol. 13,

R57 (2012). 92.

68. Wong, S. L. et al. Combining biological networks to
predict genetic interactions. Proc. Natl Acad. Sci. USA
101, 15682-15687 (2004).

69. Lee, |. et al. Predicting genetic modifier loci using
functional gene networks. Genome Res. 20,
1143-1153 (2010).

70. Kelley, R. & Ideker, T. Systematic interpretation of
genetic interactions using protein networks. Nature
Biotech. 23, 561-566 (2005).

71. Ulitsky, I. & Shamir, R. Pathway redundancy and 93.

protein essentiality revealed in the Saccharomyces
cerevisiae interaction networks. Mol. Syst. Biol. 3,
104 (2007).

72. Bellay, J. et al. Putting genetic interactions in context 94.

through a global modular decomposition. Genome
Res. 21, 1375-1387 (2011).

REVIEWS

Hess, D. C. et al. Computationally driven, quantitative
experiments discover genes required for mitochondrial
biogenesis. PLoS Genet. 5, e1000407 (2009).
Gerke, J., Lorenz, K., Ramnarine, S. & Cohen, B.
Gene—environment interactions at nucleotide
resolution. PLoS Genet. 6, 1001144 (2010).

St Onge, R. P. et al. Systematic pathway

analysis using high-resolution fitness profiling of
combinatorial gene deletions. Nature Genet. 39,
199-206 (2007).

Bandyopadhyay, S., Kelley, R., Krogan, N. J. &
Ideker, T. Functional maps of protein complexes from
quantitative genetic interaction data. PLoS Comput.
Biol. 4, 1000065 (2008).

Harrison, R., Papp, B., Pal, C., Oliver, S. G. &
Delneri, D. Plasticity of genetic interactions in
metabolic networks of yeast. Proc. Natl Acad. Sci. USA
104, 2307-2312 (2007).

Dixon, S. J. et al. Significant conservation of synthetic
lethal genetic interaction networks between distantly
related eukaryotes. Proc. Natl Acad. Sci. USA 105,
16653-16658 (2008).

Tischler, J., Lehner, B. & Fraser, A. G.

Evolutionary plasticity of genetic interaction
networks. Nature Genet. 40, 390-391 (2008).
Roguev, A. et al. Conservation and rewiring of
functional modules revealed by an epistasis map in
fission yeast. Science 322, 405-410 (2008).
Lindquist, S. Protein folding sculpting evolutionary
change. Cold Spring Harb. Symp. Quant. Biol. 74,
103-108 (2009).

Zhao, R. et al. Navigating the chaperone network:
an integrative map of physical and genetic
interactions mediated by the hsp90 chaperone.

Cell 120, 715-727 (2005).

Rutherford, S. L. & Lindquist, S. Hsp90 as a capacitor
for morphological evolution. Nature 396, 336—-342
(1998).

Queitsch, C., Sangster, T. A. & Lindquist, S.

Hsp90 as a capacitor of phenotypic variation.
Nature 417, 618-624 (2002).

Casanueva, M. O., Burga, A. & Lehner, B.

Fitness trade-offs and environmentally induced
mutation buffering in isogenic C. elegans. Science
335,82-85(2012).

Jelier, R., Semple, J. I., Garcia-Verdugo, R. & Lehner, B.
Predicting phenotypic variation in yeast from
individual genome sequences. Nature Genet. 43,
1270-1274 (2011).

This paper reports the application of
whole-genome reverse genetics: phenotypic
predictions are made from the complete
genome sequences of yeast strains and the
accuracy of these predictions are evaluated

by experimentation. Predictions are generally
good, even for genetically complex traits, when
the genes linked to the trait are evaluated as
reliable using a gene network.

Liti, G. et al. Population genomics of domestic and
wild yeasts. Nature 458, 337-341 (2009).

Baker, M. Functional genomics: the changes that
count. Nature 482, 257-262 (2012).

Gartner, K. A third component causing random
variability beside environment and genotype.

A reason for the limited success of a 30 year long
effort to standardize laboratory animals? Lab. Anim.
24, 71-77 (1990).

Eldar, A. et al. Partial penetrance facilitates
developmental evolution in bacteria. Nature 460,
510-514 (2009).

Raj, A., Rifkin, S. A., Andersen, E. &

van Oudenaarden, A. Variability in gene expression
underlies incomplete penetrance. Nature 463,
913-918 (2010).

Burga, A., Casanueva, M. O. & Lehner, B.
Predicting mutation outcome from early stochastic
variation in genetic interaction partners. Nature 480,
250-253 (2011).

Whether an inherited mutation affects
genetically identical individuals or not is
predicted by inter-individual variation in the
expression of a specific and a promiscuous
genetic interaction partner during early
embryonic development.

Hales, C. N. & Barker, D. J. Type 2 (non-insulin-
dependent) diabetes mellitus: the thrifty
phenotype hypothesis. Diabetologia 35, 595-601
(1992).

Wang, T. J. et al. Metabolite profiles and the risk of
developing diabetes. Nature Med. 17, 448-453
(2011).

NATURE REVIEWS ‘ GENETICS

© 2013 Macmillan Publishers Limited. All rights reserved

VOLUME 14 | MARCH 2013 | 177



REVIEWS

95.

96.

97.

98.

99.

100.

10

Seidel, H. S., Rockman, M. V. & Kruglyak, L.
Widespread genetic incompatibility in C. elegans
maintained by balancing selection. Science 319,
589-594 (2008).

Xing, Y. et al. Evidence for transgenerational
transmission of epigenetic tumor susceptibility in
Drosophila. PLoS Genet. 3, 1598-1606 (2007).
Frazier, H. N. & Roth, M. B. Adaptive sugar
provisioning controls survival of C. elegans
embryos in adverse environments. Curr. Biol. 19,
859-863 (2009).

Ng, S. F. et al. Chronic high-fat diet in fathers
programs B-cell dysfunction in female rat offspring.
Nature 467, 963-966 (2010).

Carone, B. R. et al. Paternally induced
transgenerational environmental reprogramming of
metabolic gene expression in mammals. Cell 143,
1084-1096 (2010).

Jablonka, E. & Raz, G. Transgenerational epigenetic
inheritance: prevalence, mechanisms, and implications
for the study of heredity and evolution. Q. Rev. Biol.
84, 131-176 (2009).

. Painter, R. C. et al. Transgenerational effects of prenatal

exposure to the Dutch famine on neonatal adiposity
and health in later life. BJOG 115, 1243—-1249 (2008).

102.

103.

104.

105.

107.

Ferguson-Smith, A. C. Genomic imprinting: the
emergence of an epigenetic paradigm. Nature Rev.
Genet. 12,565-575 (2011).

Ashe, A. et al. piRNAs can trigger a
multigenerational epigenetic memory in

the germline of C. elegans. Cell 150, 88-99
(2012).

Shirayama, M. et al. piRNAs initiate an epigenetic

memory of nonself RNA in the C. elegans germline.

Cell 150, 65-77 (2012).

Buckley, B. A. et al. A nuclear Argonaute
promotes multigenerational epigenetic inheritance
and germline immortality. Nature 489, 447-451
(2012).

References 103—105 establish that
piRNA-triggered gene silencing is stably
transmitted across many generations in

C. elegans.

. Greer, E. L. et al. Transgenerational epigenetic

inheritance of longevity in Caenorhabditis elegans.
Nature 479, 365-371 (2011).

Huang, N., Lee, |., Marcotte, E. M. &

Hurles, M. E. Characterising and predicting
haploinsufficiency in the human genome.

PLoS Genet. 6,e1001154 (2010).

108.

109.

Liu, C., van Dyk, D., Li, Y., Andrews, B. & Rao, H.

A genome-wide synthetic dosage lethality screen
reveals multiple pathways that require the functioning
of ubiquitin-binding proteins Rad23 and Dsk2. BMC
Biol. 7, 75 (2009).

Burga, A. & Lehner, B. Predicting phenotypes from
genotypes, phenotypes and a combination of the two.
Curr. Opin. Biotech. (in the press).

Acknowledgements

Our research is funded by the European Research Council
(ERC), MINECO Plan Nacional grants BFU2008-00365 and
BFU2011-26206, ERASysBio+ ERANET project
EUI2009-04059 GRAPPLE, the European Molecular Biology
Organization (EMBO) Young Investigator Program, EU
Framework 7 project 277899 4DCellFate and the EMBL/CRG
Systems Biology Program.

Competing interests statement
The author declares no competing financial interests.

FURTHER INFORMATION
Author’s homepage: http://www.crg.eu/ben_lehner
ALL LINKS ARE ACTIVE IN THE ONLINE PDF

178 [ MARCH 2013 | VOLUME 14

© 2013 Macmillan Publishers Limited. All rights reserved

www.nature.com/reviews/genetics


http://www.crg.eu/ben_lehner

	Abstract | To what extent can variation in phenotypic traits such as disease risk be accurately predicted in individuals? In this Review, I highlight recent studies in model organisms that are relevant both to the challenge of accurately predicting phenot
	Globally linking genes to phenotypes
	Figure 1 | Phenologues: mapping phenotypes between organisms. Perturbation of overlapping modules of orthologous genes may result in one set of phenotypes in one organism but a different set of phenotypes in another organism. a | For example, mutations in
	Figure 2 | Guilt‑by‑association: integrating data into genome-scale networks that can be used to link genes to phenotypes. Many different experimental and computational data sets can be used to predict whether two proteins (nodes in the figure) physically
	Systematic analysis of epistasis
	Genome–environment interactions
	Figure 3 | Systematic analysis of genetic interactions (epistasis): disease specifiers and disease modifiers. In yeast, worms and fly cells, the effects of inhibiting two 
genes simultaneously have been systematically tested for many combinations of genes
	Whole-genome reverse genetics
	Additional influences on trait variation
	Figure 4 | Whole-genome reverse genetics: making and evaluating phenotypic predictions from the genome sequences of individuals. Model organisms can also be used to test methods for predicting phenotypic variation 
from whole-genome sequences. For example
	Figure 5 | Epistasis with only a single mutation: inter-individual variation in the expression of genetic interaction partners contributes to incomplete penetrance. a | If the effects of a mutation in one gene (red) can be enhanced by mutations in three o
	Future challenges
	Figure 6 | Sources of phenotypic variance in individuals. A complete understanding of phenotypic variation in individuals will require an understanding of the contributions 
of multiple sources of variance and how they interact. For example, as illustrate
	Concluding remarks



